Published in: Angewandte Chemie International Edition (2024)
Authors: Ieva A. Cechanaviciute, Bhawana Kumari, Lars M. Alfes, Corina Andronescu, Wolfgang Schuhmann
Ammonia (NH₃) is increasingly recognized not only as a vital industrial chemical but also as a promising hydrogen carrier. Traditional ammonia oxidation, however, often leads to nitrogen gas (N₂) — a thermodynamically stable but low-value product. This study introduces a groundbreaking alternative: gas-phase electrocatalytic oxidation of NH₃ using gas diffusion electrodes (GDEs) to produce value-added nitrite (NO₂⁻) instead of N₂, thereby doubling hydrogen output while avoiding energy losses.
Researchers developed a model flow-through electrolyzer using multi-metal catalysts on high-surface-area Ni foam, forming GDEs. These electrodes enabled direct oxidation of gaseous NH₃ supplied from the backside, mimicking a scalable system using green ammonia. High entropy alloy-inspired catalyst compositions, including Nif_AlCoCrCuFe and Nif_AgCoCuNiZn, were synthesized and tested for activity and selectivity.
High Faradaic Efficiencies: NO₂⁻ formation reached up to 88%, with nearly 100% efficiency for H₂ production at the cathode.
Oxygen Evolution Suppression: Compared to conventional water electrolysis, the system operates at lower voltages (e.g. ~1.4–1.8 V), reducing parasitic OER.
Catalyst Selectivity Matters: The presence of Co and Cu in the catalyst composition was critical for selective NO₂⁻ production.
Minimal NO₃⁻ Formation: Even under high potentials, nitrate production remained negligible — a major advantage over traditional oxidation pathways.
Scalability Potential: The method leverages cheap, non-noble metals and supports further optimization through high-throughput screening.
This work reimagines ammonia electrolysis by shifting the focus from N₂ to NO₂⁻ generation. The dual output of clean hydrogen and valuable nitrogen compounds offers a more energy-efficient and economically viable route, reducing reliance on the energy-intensive Ostwald process for nitrate production.
The study lays the groundwork for next-gen ammonia conversion systems. Future research will involve adapting high-throughput synthesis strategies to discover even more stable and selective catalysts, enabling industrial-scale deployment of GDE-based ammonia electrolyzers.
Published:
Sie müssen den Inhalt von reCAPTCHA laden, um das Formular abzuschicken. Bitte beachten Sie, dass dabei Daten mit Drittanbietern ausgetauscht werden.
Mehr InformationenSie sehen gerade einen Platzhalterinhalt von Google Maps. Um auf den eigentlichen Inhalt zuzugreifen, klicken Sie auf die Schaltfläche unten. Bitte beachten Sie, dass dabei Daten an Drittanbieter weitergegeben werden.
Mehr InformationenSie sehen gerade einen Platzhalterinhalt von Mapbox. Um auf den eigentlichen Inhalt zuzugreifen, klicken Sie auf die Schaltfläche unten. Bitte beachten Sie, dass dabei Daten an Drittanbieter weitergegeben werden.
Mehr InformationenSie sehen gerade einen Platzhalterinhalt von OpenStreetMap. Um auf den eigentlichen Inhalt zuzugreifen, klicken Sie auf die Schaltfläche unten. Bitte beachten Sie, dass dabei Daten an Drittanbieter weitergegeben werden.
Mehr Informationen