Authors: Markus Stricker, Lars Banko, Nik Sarazin, Niklas Siemer, Jörg Neugebauer, Alfred Ludwig
Published by: Ruhr University Bochum & Max Planck Institute for Iron Research
Keywords: active learning, pyiron, high-throughput, Gaussian process regression, automation, materials discovery
In the rapidly evolving world of materials science, the integration of simulation and experiment is no longer a distant goal—it’s becoming a practical reality. This study introduces a groundbreaking approach to experimental materials characterization that leverages concepts from high-throughput computational workflows, using a unified development environment called pyiron.
Traditionally, simulation and experimental workflows have operated in silos. But by embedding experimental routines directly within a simulation-oriented framework, researchers have demonstrated a system where experimental jobs can be controlled, optimized, and analyzed in the same way as simulations.
This approach enables data-driven decision-making using Gaussian Process Regression (GPR) to guide experimental measurements—greatly reducing the number of necessary measurements while preserving data quality.
Using a thin-film material library of Ir–Pd–Pt–Rh–Ru alloys, the team showed that by measuring only ~12% of the total samples and predicting the rest with GPR, the process could be accelerated by a factor of 10. The approach preserved accuracy while minimizing time and effort.
Unified data framework: Simulations and experiments share a common platform for data management and orchestration.
Adaptive sampling: Instead of brute-force scanning, the system targets high-uncertainty regions for measurement, improving efficiency.
Scalability: The approach is designed to be extendable to real-world experimental hardware and robotic labs.
This study marks an essential first step toward autonomous materials discovery, where computational models, robotic labs, and active learning algorithms collaborate in a closed-loop system. While full automation may still face technical barriers—like proprietary lab software—the conceptual and technological groundwork has now been laid.
Published:
Sie müssen den Inhalt von reCAPTCHA laden, um das Formular abzuschicken. Bitte beachten Sie, dass dabei Daten mit Drittanbietern ausgetauscht werden.
Mehr InformationenSie sehen gerade einen Platzhalterinhalt von Google Maps. Um auf den eigentlichen Inhalt zuzugreifen, klicken Sie auf die Schaltfläche unten. Bitte beachten Sie, dass dabei Daten an Drittanbieter weitergegeben werden.
Mehr InformationenSie sehen gerade einen Platzhalterinhalt von Mapbox. Um auf den eigentlichen Inhalt zuzugreifen, klicken Sie auf die Schaltfläche unten. Bitte beachten Sie, dass dabei Daten an Drittanbieter weitergegeben werden.
Mehr InformationenSie sehen gerade einen Platzhalterinhalt von OpenStreetMap. Um auf den eigentlichen Inhalt zuzugreifen, klicken Sie auf die Schaltfläche unten. Bitte beachten Sie, dass dabei Daten an Drittanbieter weitergegeben werden.
Mehr Informationen