Published in: Angewandte Chemie International Edition (2023)
Authors: Christian M. Clausen, Olga A. Krysiak, Lars Banko, et al.
As the demand for efficient, low-cost energy solutions rises, scientists are looking beyond traditional materials to find next-generation catalysts. This study presents a powerful combination of machine learning and high-entropy alloy (HEA) chemistry to predict and understand the behavior of electrocatalysts in the alkaline oxygen reduction reaction (ORR).
The research focuses on the compositionally complex solid solution (CCSS) system Ag–Pd–Pt–Ru. Using combinatorial co-sputtering, the team created thin-film material libraries representing 1582 unique alloy compositions. These were analyzed using high-throughput electrochemical testing in alkaline conditions.
Rather than relying solely on alloy composition, the researchers developed a graph neural network (GNN) to predict adsorption energy distributions for key ORR intermediates (*OH and *O). These distributions were then used as descriptors in a theory-derived catalytic model, resulting in highly accurate predictions of ORR activity—with a mean absolute error of just 0.042 mA/cm².
Notably, discrepancies between experimental and predicted results provided insights into how real-world surfaces may differ from their idealized compositions. These deviations hint at changes in surface composition during operation—possibly due to oxidation or segregation—which traditional models often overlook.
Machine learning models, when trained on DFT data, can accurately predict catalytic activity across complex alloy spaces.
Adsorption energy distributions are better descriptors than simple composition metrics.
The approach enables extrapolation to unexplored compositions, offering a path to AI-guided catalyst discovery.
Findings suggest real catalytic surfaces often evolve during reactions, highlighting the need for dynamic models and surface-sensitive characterization.
This work pushes the boundaries of how we understand and design catalytic materials. By integrating machine learning with physical theory and high-throughput experimentation, the study offers a scalable and predictive framework for the discovery of next-gen electrocatalysts—especially within the high-dimensional spaces of HEAs.
Published:
Sie müssen den Inhalt von reCAPTCHA laden, um das Formular abzuschicken. Bitte beachten Sie, dass dabei Daten mit Drittanbietern ausgetauscht werden.
Mehr InformationenSie sehen gerade einen Platzhalterinhalt von Google Maps. Um auf den eigentlichen Inhalt zuzugreifen, klicken Sie auf die Schaltfläche unten. Bitte beachten Sie, dass dabei Daten an Drittanbieter weitergegeben werden.
Mehr InformationenSie sehen gerade einen Platzhalterinhalt von Mapbox. Um auf den eigentlichen Inhalt zuzugreifen, klicken Sie auf die Schaltfläche unten. Bitte beachten Sie, dass dabei Daten an Drittanbieter weitergegeben werden.
Mehr InformationenSie sehen gerade einen Platzhalterinhalt von OpenStreetMap. Um auf den eigentlichen Inhalt zuzugreifen, klicken Sie auf die Schaltfläche unten. Bitte beachten Sie, dass dabei Daten an Drittanbieter weitergegeben werden.
Mehr Informationen